Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(id, app(p, x)) → APP(s, app(id, x))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(id, x) → APP(s, x)
APP(app(div, app(s, x)), app(s, y)) → APP(id, y)
APP(id, x) → APP(s, app(s, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(id, x) → APP(s, app(s, app(s, x)))
APP(id, app(p, x)) → APP(id, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), app(id, y))), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), app(id, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), app(id, y))
APP(id, app(p, x)) → APP(id, app(s, app(id, x)))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(id, app(p, x)) → APP(s, app(id, x))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(id, x) → APP(s, x)
APP(app(div, app(s, x)), app(s, y)) → APP(id, y)
APP(id, x) → APP(s, app(s, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(id, x) → APP(s, app(s, app(s, x)))
APP(id, app(p, x)) → APP(id, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), app(id, y))), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), app(id, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), app(id, y))
APP(id, app(p, x)) → APP(id, app(s, app(id, x)))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 15 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(id, app(p, x)) → APP(id, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(id, app(p, x)) → APP(id, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (2)x_2   
POL(p) = 3   
POL(app(x1, x2)) = 1 + (4)x_2   
POL(id) = 0   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), app(id, y))), app(s, y))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1 + (3)x_2   
POL(cons) = 1   
POL(map) = 4   
POL(app(x1, x2)) = 4 + x_1 + (2)x_2   
The value of delta used in the strict ordering is 27.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), app(id, y))), app(s, y)))
app(id, x) → x
app(id, x) → app(s, app(s, app(s, x)))
app(id, app(p, x)) → app(id, app(s, app(id, x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.